

ENERGY AND ENVIRONMENT GAS HYDRATES & FLOW ASSURANCE

Effects of pressure on the Wax Appearance Temperature (WAT) of crude oils

INTRODUCTION

In the petroleum industry, waxes crystallization resulting from the precipitation of paraffins contained in oils, can occur in reservoirs, pipelines and process equipment. Many major issues can be related to these deposits, including a modification of the flow characteristics, a reduced production or even a blocked line in the worst cases. To evaluate the possible wax precipitation of a given fluid, the wax appearance temperature has to be determined. It is defined as the temperature at which a crude oil first precipitates. Most of the studies about WAT are carried out under atmospheric pressure. However, WAT determination under experimental conditions close to real operating ones (particularly under pressure) is a key point to predict the crude oils behavior.

EXPERIMENT

The high-pressure microcalorimetry analyses were carried out with the MICROCALVET, using two 330 µL Hastelloy C276 cells (sample and reference) designed to undergo pressures up to 400 bar. Two different crude oils, A and C, have been studied. They were preheated at 80°C for 1 hour to make sure waxes were solubilized. After cooling, about 100 mg of each sample were transfered to the MICROCALVET and analyzed using the following profile:

• heating from 30°C to 80°C and isotherm of 180 minutes at this temperature,

Figure 1 – Example of wax deposits in a pipe

 cooling at 1°C/min until reaching a temperature of -10°C and isotherm of 15 minutes at this temperature,

• heating at 1°C/min from -10°C to room temperature. A quantity of undecane was placed in the reference cell to keep the calorimeter balanced. Two gases were used for pressurization: methane (99,995%) and nitrogen (99,996%). To determine the samples WAT, the onset temperature of the first peak has been considered. It is

defined as the between the baseline tangent at the first inflection point (figure

intersection and the peak 2).

Figure 2 – WAT determination

		А	С
	Paraffins content (wt %)	5,4	3,1
	Linear parrafins above C34 (wt % of n-paraffins)	16	15

Table 1 – Samples content

AN697

RESULTS AND CONCLUSION

Before pressurization, the experiments were run at amospheric conditions (1,01 bar). Two exothermic events were recorded for each sample during the cooling phase corresponding to two different paraffinic fractions that precipitate (high molar masses first then lower). The WAT, related to the first peak, was found at 44.6°C for the sample A and 44.2°C for the sample C.

The pressurization of the two oils in presence of a rising pressure of nitrogen increased the WATs (see figure 3). On the contrary, with methane, crystallization temperatures were reduced for both samples (figure 4) leading to the conclusion that methane, unlike nitrogen, plays a role in improving the solubilization of waxes. This tendency to see the WAT reduced under methane pressure was even more significant with the sample C. It can be explained by the fact that it contains a lower paraffin content and above all less linear paraffins above C34 than the sample A (table 1).

Figure 3 – WAT vs nitrogen pressure for both samples

Figure 4 – WAT vs methane pressure for both samples

A further data exploitation is possible with Calisto data treatment software to determine the percentage of converted waxes versus temperature (if the heats of crystallization of the "pure" waxes are known).

Reference: ASTM E1641-13 Standard test method for decomposition kinetics by thermogravimetry using the Ozawa/Flynn/Wallmethod.

Switzerland – France – China – United States – India – Hong Kong - www.setaramsolutions.com - setaram@kep-technologies.com

Setaram is a registered trademark of KEP Technologies Group